NISSEI

SERVICE MANUAL

DG-503

RANGE: 1.6 - 525 MHz

Max. Power: 200W

SERVICE MANUAL

TABLE OF CONTENT

MODEL: DG-503 SWR & POWER METER 1.6-525 MHz

SECTION SUBJECT:

1.	INTR	ODUCTION	
		Main features Specification	2
2.	ALIG	NMENT	
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Test equipment	3 3 4 4 4 4 5
3.	SCH	EMATICS & COMPONENT PLACEMENT	
		Main board schematic	6 7
4.	EXPI	LODED DRAWING & PARTS LIST	
		EXPLODED DRAWING	8

1. INTRODUCTION

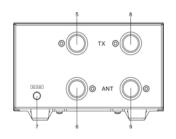
This digital SWR & Watt meter is highly accurate for measuring Forward Power, Reflected Power, & VSWR.

1.1 Main Features:

- A. Large LCD (3.5") display for easy of reading.
- B. Forward / Reflected power / VSWR ratio in one push button.
- C. LCD backlight display
- D. Convenient control layout for easy operation
- E. Packing gift box and DC 12V wire.

1.2 SPECIFICATIONS

MODEL	DG-503	
Frequency Range	1.6-60 MHz / 125-525 MHz	
Caibration point	14MHz / 50MHz / 145MHz / 435MHz	
Power Range	0 - 200W	
Accuracy	(+/- 5%)	
Minimum Power for SWR	1W	
Input/Output Connector	SO239 (N-female option)	
Weight (Net)	750 g	
Insertion Loss	Less than 0.1 dB	
Testing Function	Fwd/Ref Power & VSWR ratio	
Input/Output Impedance	50 Ohm	
Dimension (W/H/D) mm	140 x 84 x 122	
Accessories	Operation Manual, 12V DC Wire	


<FRONT PANEL>

<FRONT & REAR PANEL>

- 1. LCD Display: Indicates FWD/REF and VSWR
- 2. HF & V/UHF band switch.
- 3. Power switch

<REAR PANEL>

<REAR PANEL>

5.TX connector : Coax connector to transmitter RF output6. ANT connector : Coax connector to antenna system

7. Power source:13.8V DC wire

[Black line is negative (-), black/white line is positive (+)]

2. Alignment

- 2.1 Test Equipment
 - A. HF transceiver
 - B. VUHF dual band transceiver
 - C. VHF Power amplifier (VHF), Input 5-20W, Output 200W
 - D. UHF power amplifier (UHF), Input 5-20W, Output 200W
 - E. Power Supply 13.8, 50A
 - F. Dual Band Antenna (MAX. 200W)
 - G. HF Antenna (MAX, 200W)
 - H. Power meter BIRD 4421 or BIRD 43
 - I. Dummy Load 50 OHM, MAX. 200W X1, 25 OHM, MAX, 200W x 1
 - J. Ceramic adjusting driver
- 2.2 Forward Power alignment (125-525 MHz coupler & PCB adjustment)
 Preset: Turn DG-503 switch to "VUHF", connect coupler plug to
 JP2 on C board
 - A. Turn dual band transceiver to VHF 145.130 MHZ position "M" Connect BIRD 4421 + dummy load. Record forward power and SWR from BIRD 4421
 - B. Turn dual band transceiver to UHF at 435.130 MHz; position "M" Connect BIRD 4421 + dummy load. Record forward power and SWR from BIRD 4421
 - C. Turn DG-503 to VUHF (DG-503 replace BIRD 4421)
 - D. Press PTT, adjust CV1 on coupler until the reading of forward power is same as record from point B.
 - E. Turn transceiver to VHF at 145.130 MHz, position "M"
 - F. Press PTT, adjust R3 UVFWD on PCB board, get the same readings recorded from point A
 - G. As CV1 and R3 UVFWD might interfere each other, repeat step D & F until correct readings for V and U range are gotton.
 - H. When adjustments made in step D and/or F, re-alignment A-G is essential to meet 5% tolerance

2.3 SWR alignment (125-525 MHz)

- A. Connect transceiver TX to DG-503 TX; antenna to DG-503 ANT
- B. Turn transceiver to UHF 435.130 MHZ, position "M"
- C. Refer to 2.1 step B SWR value ; adjust CV2 in coupler to get same SWR reading from DG-503
- D. Turn transceiver to VHF 145.139 MHZ, position "M"
- E. Refer to 2.1 step A SWR value; adjust R4 UVREV on the PCB to get same SWR reading from DG-503
- F. As CV2 and R4 UVREV might interfere with each other, repeat step C and E uill a correct reading for V and U range are gotten.
- G. When adjustments made in step C and/or E, re-alignment A-G is essential to meet 5% tolerance

2.4 Forward power alignment (1.6-60 MHZ)

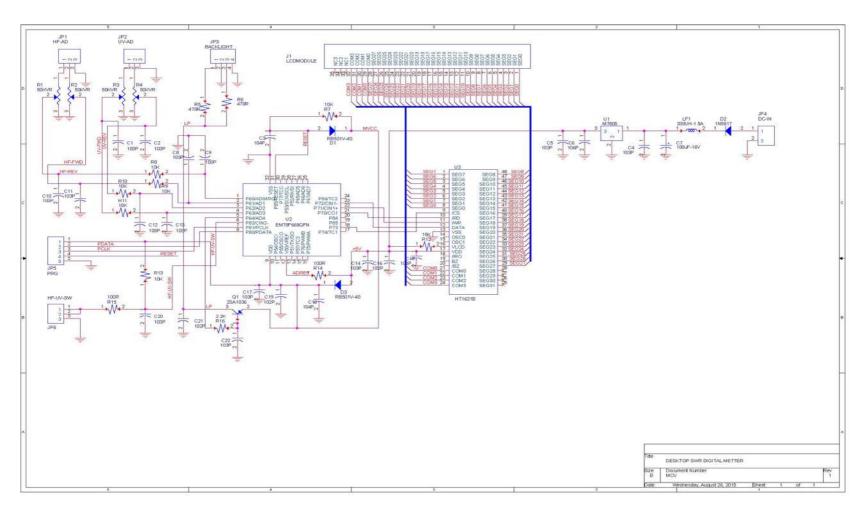
- A. Turn HF transceiver to 28.5 MHz, connect BIRD 4421 + DG-503 + 50 Ohm dummy load.
- B. Turn DG-503 switch to "HF", connect coupler plug into JP1 on PCB
- C. Push PTT, tune transceiver power to get "100W" shown on BIRD 4421
- D. Use ceramic driver to adjust R2 HFFWD on the PCB until DG-503 reading 100W is shown

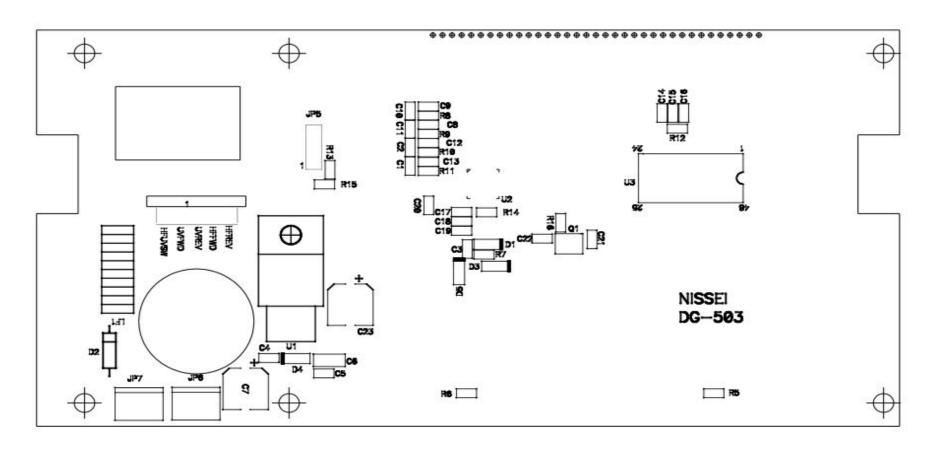
;2-5 SWR alignment (1.6-60 MHz)

- A. Turn HF transceiver to 28.5 MHz, connect BIRD 4421 + DG-503 + 25 Ohm dummy load.
- B. Set DG-503 to HF range
- C. Push PTT, record SWR value which is shown on BIRD 4421
- D. Use ceramic driver to adjust R1 HFREV on PCB until same SWR reading shown on DG-503.

2.6 Final alignment

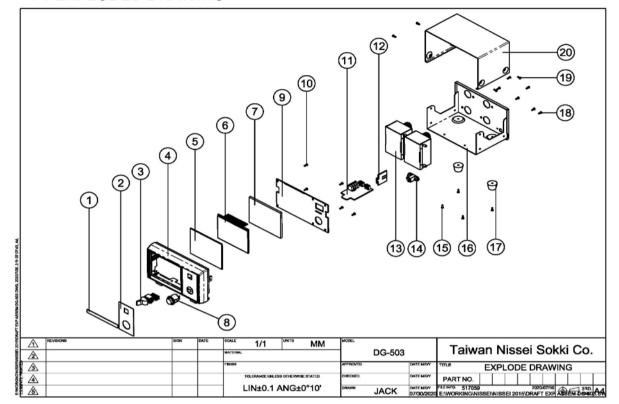
PCBs (board A, B, &C) were aligned seperately before assembly. After DG-503 completed assembly, it is a must for the calibrator to do a final check on every calibration point mentioned above to assure DG-503 accuracy


2.7 Alignment spots photo (PCB-C driver board)



3. SCHEMATIC

3.1 Main board schematic

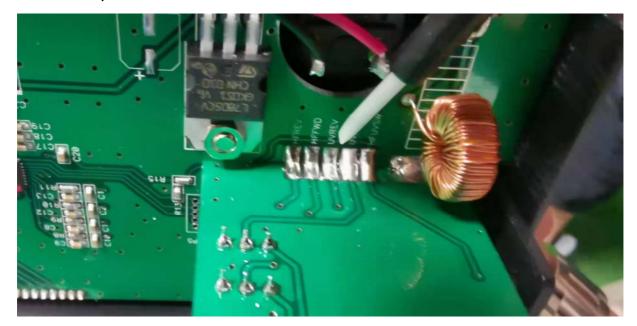


3.2 Main board component placement

4. EXPLODED DRAWING & PARTS LIST

4-1 EXPLODED DRAWING

4-2 PARTS LIST


No	Name	Description	QTY
1	Plate	Name plate	1
2	Plate	Function plate	1
3	Switch	Slide	1
4	Panel	Plastic front panel	1
5	Lens	PMMA	1
6	Display	LCD display	1
7	Backlight	LED backlight sheet	1
8	Button	Push button	1
9	РСВ	PCB_B_Main Board	1
10	Screw		6
11	РСВ	PCB_C_Driver Board	1
12	РСВ	PCB for slide SW	1
13	Sensor	x2, HF and V/U HF	2
14	Socket	13.8V	1
15	Screw		6
16	Chassis	Base cabinet	1
17	Stand	Rubber stand	4
18	Screw		4
19	Screw		4
20	Chassis	Top cabinet	1

Brand: Nissei
Type: DG503

Complaint: Bad read out or 000 read out

If the display shows 000, pls refer to the photo and apply fully soldering at the said 5 points.

